241 research outputs found

    Decreased surface expression of the 8 subunit of the GABA(A) receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome

    Get PDF
    While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABAA receptors (GABAARs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the Ξ΄ subunit of the GABAAR, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two Ξ΄ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that Ξ΄ subunit-containing GABAARs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in Ξ΄ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the Ξ΄ subunit led to studies of surface expression of the Ξ΄ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total Ξ΄ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the Ξ΄ subunit in these mice. No significant changes were observed in total or surface expression of the Ξ±4 subunit protein, a major partner of the Ξ΄ subunit in the forebrain. Postembedding immunogold labeling for the Ξ΄ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with immunolabeling at perisynaptic locations in Fmr1 KO mice. While Ξ±4 immunogold particles were also reduced at perisynaptic locations in the Fmr1 KO mice, the labeling was increased at synaptic sites. Together these findings suggest that, in the dentate gyrus, altered surface expression of the Ξ΄ subunit, rather than a decrease in Ξ΄ subunit expression alone, could be limiting Ξ΄ subunit-mediated tonic inhibition in this model of FXS. Finding ways to increase surface expression of the Ξ΄ subunit of the GABAAR could be a novel approach to treatment of hyperexcitability-related alterations in FXS

    The limit to behavioral inertia and the power of default in voluntary contribution games

    Get PDF
    It is well documented that people are reluctant to switch from a default option. We experimentally test the robustness of this behavioral inertia in a collective decision-making setting by varying the default option type and the decision-making environment. We examine the impacts of automatic-participation and no-participation default options on subjects’ participation in a public goods provision and their contributions. Two variants of public goods game are employed: the linear and the threshold public goods games. The study shows the evidence of partial stickiness rather than complete stickiness of default options as indicated in empirical studies. Our experimental results square with the evidence of behavioral inertia only when the automatic-participation default is used. This default boosts contributions in the linear public goods game but not in the threshold public goods game. The evidence of partial stickiness is robust to the variation of the game employed, but the effect on contribution is sensitive to it

    Convulsant Doses of a Dopamine D1 Receptor Agonist Result in Erk-Dependent Increases in Zif268 and Arc/Arg3.1 Expression in Mouse Dentate Gyrus

    Get PDF
    Activation of dopamine D1 receptors (D1Rs) has been shown to induce epileptiform activity. We studied the molecular changes occurring in the hippocampus in response to the administration of the D1-type receptor agonist, SKF 81297. SKF 81297 at 2.5 and 5.0 mg/kg induced behavioural seizures. Electrophysiological recordings in the dentate gyrus revealed the presence of epileptiform discharges peaking at 30–45 min post-injection and declining by 60 min. Seizures were prevented by the D1-type receptor antagonist, SCH 23390, or the cannabinoid CB1 receptor agonist, CP 55,940. The effect of SKF 81297 was accompanied by increased phosphorylation of the extracellular signal-regulated protein kinases 1 and 2 (ERK), in the granule cells of the dentate gyrus. This effect was also observed in response to administration of other D1-type receptor agonists, such as SKF83822 and SKF83959. In addition, SKF 81297 increased the phosphorylation of the ribosomal protein S6 and histone H3, two downstream targets of ERK. These effects were prevented by genetic inactivation of D1Rs, or by pharmacological inhibition of ERK. SKF 81297 was also able to enhance the levels of Zif268 and Arc/Arg3.1, two immediate early genes involved in transcriptional regulation and synaptic plasticity. These changes may be involved in forms of activity-dependent plasticity linked to the manifestation of seizures and to the ability of dopamine to affect learning and memory

    Adult and Embryonic GAD Transcripts Are Spatiotemporally Regulated during Postnatal Development in the Rat Brain

    Get PDF
    GABA (gamma-aminobutyric acid), the main inhibitory neurotransmitter in the brain, is synthesized by glutamic acid decarboxylase (GAD). GAD exists in two adult isoforms, GAD65 and GAD67. During embryonic brain development at least two additional transcripts exist, I-80 and I-86, which are distinguished by insertions of 80 or 86 bp into GAD67 mRNA, respectively. Though it was described that embryonic GAD67 transcripts are not detectable during adulthood there are evidences suggesting re-expression under certain pathological conditions in the adult brain. In the present study we systematically analyzed for the first time the spatiotemporal distribution of different GADs with emphasis on embryonic GAD67 mRNAs in the postnatal brain using highly sensitive methods. hybridizations confirmed the occurrence of embryonic GAD67 transcripts in the olfactory bulb and furthermore detected their localization mainly in the subventricular zone and the rostral migratory stream.Embryonic GAD67 transcripts can hardly be detected in the adult brain, except for specific regions associated with neurogenesis and high synaptic plasticity. Therefore a functional role in processes like proliferation, migration or synaptogenesis is suggested

    Visualization of acetylcholine distribution in central nervous system tissue sections by tandem imaging mass spectrometry

    Get PDF
    Metabolite distribution imaging via imaging mass spectrometry (IMS) is an increasingly utilized tool in the field of neurochemistry. As most previous IMS studies analyzed the relative abundances of larger metabolite species, it is important to expand its application to smaller molecules, such as neurotransmitters. This study aimed to develop an IMS application to visualize neurotransmitter distribution in central nervous system tissue sections. Here, we raise two technical problems that must be resolved to achieve neurotransmitter imaging: (1) the lower concentrations of bioactive molecules, compared with those of membrane lipids, require higher sensitivity and/or signal-to-noise (S/N) ratios in signal detection, and (2) the molecular turnover of the neurotransmitters is rapid; thus, tissue preparation procedures should be performed carefully to minimize postmortem changes. We first evaluated intrinsic sensitivity and matrix interference using Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectrometry (MS) to detect six neurotransmitters and chose acetylcholine (ACh) as a model for study. Next, we examined both single MS imaging and MS/MS imaging for ACh and found that via an ion transition from m/z 146 to m/z 87 in MS/MS imaging, ACh could be visualized with a high S/N ratio. Furthermore, we found that in situ freezing method of brain samples improved IMS data quality in terms of the number of effective pixels and the image contrast (i.e., the sensitivity and dynamic range). Therefore, by addressing the aforementioned problems, we demonstrated the tissue distribution of ACh, the most suitable molecular specimen for positive ion detection by IMS, to reveal its localization in central nervous system tissues

    Mapping the Spatio-Temporal Pattern of the Mammalian Target of Rapamycin (mTOR) Activation in Temporal Lobe Epilepsy

    Get PDF
    Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (nβ€Š=β€Š13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE

    NF90 Binds the Dengue Virus RNA 3β€² Terminus and is a Positive Regulator of Dengue Virus Replication

    Get PDF
    Background Viral RNA translation and replication are regulated by sequence and structural elements in the 5β€² and 3β€² untranslated regions (UTR) and by host cell and/or viral proteins that bind them. Dengue virus has a single-stranded RNA genome with positive polarity, a 5β€² m7GpppG cap, and a conserved 3β€²-terminal stem loop (SL) that is linked to proposed functions in viral RNA transcription and translation. Mechanisms explaining the contributions of host proteins to viral RNA translation and replication are poorly defined, yet understanding host protein-viral RNA interactions may identify new targets for therapeutic intervention. This study was directed at identifying functionally significant host proteins that bind the conserved dengue virus RNA 3β€² terminus. Methodology/Principal Findings Proteins eluted from a dengue 3β€² SL RNA affinity column at increasing ionic strength included two with double-strand RNA binding motifs (NF90/DRBP76 and DEAH box polypeptide 9/RNA helicase A (RHA)), in addition to NF45, which forms a heterodimer with NF90. Although detectable NF90 and RHA proteins localized to the nucleus of uninfected cells, immunofluorescence revealed cytoplasmic NF90 in dengue virus-infected cells, leading us to hypothesize that NF90 has a functional role(s) in dengue infections. Cells depleted of NF90 were used to quantify viral RNA transcript levels and production of infectious dengue virus. NF90 depletion was accompanied by a 50%-70% decrease in dengue RNA levels and in production of infectious viral progeny. Conclusions/Significance The results indicate that NF90 interacts with the 3β€² SL structure of the dengue RNA and is a positive regulator of dengue virus replication. NF90 depletion diminished the production of infectious dengue virus by more than 50%, which may have important significance for identifying therapeutic targets to limit a virus that threatens more than a billion people worldwide.Ruth L. Kirschstein National Research Service Award (NIH-NRSA GM64985)UNCF-Merck Postdoctoral FellowshipNational Institute of Allergy and Infectious Diseases (U.S.)Ellison Medical Foundatio

    Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues

    Get PDF
    Drug addiction is a chronic relapsing disorder of compulsive drug use. Studies of the neurobehavioral factors that promote drug relapse have yet to produce an effective treatment. Here we take a different approach and examine the factors that suppress – rather than promote – relapse. Adapting Pavlovian procedures to suppress operant drug response, we determined the anti-relapse action of environmental cues that signal drug omission (unavailability) in rats. Under laboratory conditions linked to compulsive drug use and heightened relapse risk, drug omission cues suppressed three major modes of relapse-promotion (drug-predictive cues, stress, and drug exposure) for cocaine and alcohol. This relapse-suppression is partially driven by omission cue-reactive neurons, which constitute small subsets of glutamatergic and GABAergic cells, in the infralimbic cortex. Future studies of such neural activity-based cellular units (neuronal ensembles/memory engram cells) for relapse-suppression can be used to identify alternate targets for addiction medicine through functional characterization of anti-relapse mechanisms

    Febrile seizures and mechanisms of epileptogenesis: insights from an animal model.

    Get PDF
    Temporal lobe epilepsy (TLE) is the most prevalent type of human epilepsy, yet the causes for its development, and the processes involved, are not known. Most individuals with TLE do not have a family history, suggesting that this limbic epilepsy is a consequence of acquired rather than genetic causes. Among suspected etiologies, febrile seizures have frequently been cited. This is due to the fact that retrospective analyses of adults with TLE have demonstrated a high prevalence (20-->60%) of a history of prolonged febrile seizures during early childhood, suggesting an etiological role for these seizures in the development of TLE. Specifically, neuronal damage induced by febrile seizures has been suggested as a mechanism for the development of mesial temporal sclerosis, the pathological hallmark of TLE. However, the statistical correlation between febrile seizures and TLE does not necessarily indicate a causal relationship. For example, preexisting (genetic or acquired) 'causes' that result independently in febrile seizures and in TLE would also result in tight statistical correlation. For obvious reasons, complex febrile seizures cannot be induced in the human, and studies of their mechanisms and of their consequences on brain molecules and circuits are severely limited. Therefore, an animal model was designed to study these seizures. The model reproduces the fundamental key elements of the human condition: the age specificity, the physiological temperatures seen in fevers of children, the length of the seizures and their lack of immediate morbidity. Neuroanatomical, molecular and functional methods have been used in this model to determine the consequences of prolonged febrile seizures on the survival and integrity of neurons, and on hyperexcitability in the hippocampal-limbic network. Experimental prolonged febrile seizures did not lead to death of any of the seizure-vulnerable populations in hippocampus, and the rate of neurogenesis was also unchanged. Neuronal function was altered sufficiently to promote synaptic reorganization of granule cells, and transient and long-term alterations in the expression of specific genes were observed. The contribution of these consequences of febrile seizures to the epileptogenic process is discussed
    • …
    corecore